0

New Trends in Enzyme Catalysis and Biomimetic Chemical Reactions

Erschienen am 31.12.2002, 1. Auflage 2002
106,99 €
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9781402010064
Sprache: Englisch
Umfang: x, 230 S., 7 s/w Illustr., 230 p. 7 illus.
Einband: gebundenes Buch

Beschreibung

InhaltsangabePreface. 1: Methods of investigation of enzymes structure and action mechanisms. 1.1. Physico-chemical methods in enzyme catalysis. 1.2. Kinetic methods. 2: Mechanisms of enzymatic reactions. 2.1. General principles of enzymatic catalysis. 2.2. Electron transfer (ET). 2.3. Hydrogen transfer. 2.4. Electron-proton coupling. Mechanism of ATPase reactions in energy-conversion systems. 2.5. Concerted reactions. 2.6. Multi-electron mechanisms of redox reactions. Switching molecular devices. 2.7. Stabilization of enzyme reactions transition states. 2.8. Pretransition states. 2.9. Principle of 'optimum motion' and mechanisms of enzymes reactions. 2.10. Radical mechanisms of enzyme catalysis. 2.11. Substrate channeling. 2.12. Relationships between the energy and entropy activation of enzymatic processes. 3: Mechanisms of chosen enzyme systems. 3.1. Nitrogenase. 3.2. Cytochrome P-450. 3.3. Methane monooxigenase. 3.4. Nitric oxide synthase. 3.5. Light energy conversion and water-oxidation systems in photosynthesis. 4: Some properties important for enzyme catalysis. 4.1. Intramolecular dynamics and conformational transitions in enzymes. 4.2. Electrostatic effects in proteins and enzymes. 4.3. Enzymes from extreme thermophylic bacteria. 5: Areas related to enzyme catalysis. 5.1. Antibody catalysis. 5.2. Enzymes in organic solvents. 5.3. Enzymes in synthetic chemistry. 5.4. Enzymes design and redesign. 6: Model chemical systems. 6.1. General principles. 6.2. Reduction of dinitrogen. 6.3. Hydroxylation of organic compounds. 6.4. Light energy conversion. 6.5. Water oxidation. 6.6. Organic reactions. References. Index.

Inhalt

Preface. 1: Methods of investigation of enzymes structure and action mechanisms. 1.1. Physico-chemical methods in enzyme catalysis. 1.2. Kinetic methods. 2: Mechanisms of enzymatic reactions. 2.1. General principles of enzymatic catalysis. 2.2. Electron transfer (ET). 2.3. Hydrogen transfer. 2.4. Electron-proton coupling. Mechanism of ATPase reactions in energy-conversion systems. 2.5. Concerted reactions. 2.6. Multi-electron mechanisms of redox reactions. Switching molecular devices. 2.7. Stabilization of enzyme reactions transition states. 2.8. Pretransition states. 2.9. Principle of "optimum motion" and mechanisms of enzymes reactions. 2.10. Radical mechanisms of enzyme catalysis. 2.11. Substrate channeling. 2.12. Relationships between the energy and entropy activation of enzymatic processes. 3: Mechanisms of chosen enzyme systems. 3.1. Nitrogenase. 3.2. Cytochrome P-450. 3.3. Methane monooxigenase. 3.4. Nitric oxide synthase. 3.5. Light energy conversion and water-oxidation systems in photosynthesis. 4: Some properties important for enzyme catalysis. 4.1. Intramolecular dynamics and conformational transitions in enzymes. 4.2. Electrostatic effects in proteins and enzymes. 4.3. Enzymes from extreme thermophylic bacteria. 5: Areas related to enzyme catalysis. 5.1. Antibody catalysis. 5.2. Enzymes in organic solvents. 5.3. Enzymes in synthetic chemistry. 5.4. Enzymes design and redesign. 6: Model chemical systems. 6.1. General principles. 6.2. Reduction of dinitrogen. 6.3. Hydroxylation of organic compounds. 6.4. Light energy conversion. 6.5. Water oxidation. 6.6. Organic reactions. References. Index.